Mathematical Morphology

Isabelle Bloch

http://www.tsi.enst.fr/~bloch

Ecole Nationale Supérieure des Télécommunications - CNRS UMR 5141 LTCI

Paris - France

A few references

- J. Serra, Image Analysis and Mathematical Morphology, Academic Press, New-York, 1982.
- J. Serra (Ed.), Image Analysis and Mathematical Morphology, Part II: Theoretical Advances, Academic Press, London, 1988.
- P. Soille, *Morphological Image Analysis*, Springer-Verlag, Berlin, 1999.

Shape or spatial relations?

Simplifying and selecting relevant information...

Mathematical Morphology – p.4/8-

Introduction

- Origin: study of porous media
- Principle: study of objects (images) based on:
 - shape, geometry, topology
 - grey levels, colors
 - neighborhood information
- Mathematical bases:
 - set theory
 - topology
 - geometry
 - algebra (lattice theory)
 - probabilities, random closed sets
 - functions
- Main characteristics:
 - non linear
 - non invertible
 - strong properties
 - associated algorithms

Tools for

- filtering
- segmentation
- measures (distances, granulometry, integral geometry, topology, stochastic processes...)
- texture analysis
- shape recognition
- scene interpretation
- ...

Applications in numerous domains

Four fundamental principles

- 1. Compatibility with translations
- 2. Compatibility with scaling
- 3. Local knowledge
- 4. Continuity (semi-continuity)

Structuring element

- shape
- size
- origin (not necessarily in *B*)
- examples:

Binary dilation

Minkowski addition:

$$X \oplus Y = \{x + y \mid x \in X, y \in Y\}$$

• Binary dilation:

$$D(X,B) = X \oplus \check{B} = \{x + y \mid x \in X, y \in \check{B}\} (or = X \oplus B)$$
$$= \bigcup_{x \in X} \check{B}_x = \{x \in \mathbb{R}^n \mid B_x \cap X \neq \emptyset\}$$

Binary dilation

Minkowski addition:

$$X \oplus Y = \{x + y \mid x \in X, y \in Y\}$$

Binary dilation:

$$D(X,B) = X \oplus \check{B} = \{x + y / x \in X, y \in \check{B}\} (or = X \oplus B)$$
$$= \bigcup_{x \in X} \check{B}_x = \{x \in \mathbb{R}^n / B_x \cap X \neq \emptyset\}$$

Properties of dilation:

- extensive $(X \subseteq D(X, B))$ if $O \in B$;
- increasing $(X \subseteq Y \Rightarrow D(X, B) \subseteq D(Y, B));$
- $B \subseteq B' \Rightarrow D(X, B) \subseteq D(X, B');$
- commutes with union, not with intersection:

 $D(X \cup Y, B) = D(X, B) \cup D(Y, B), \quad D(X \cap Y, B) \subseteq D(X, B) \cap D(Y, B);$

• iterativity property: $D[D(X, B), B'] = D(X, B \oplus B')$.

Example of dilation

Binary erosion

$E(X,B) = \{x \in \mathbb{R}^n / B_x \subseteq X\}$ $= \{x / \forall y \in B, x + y \in X\} = X \ominus \check{B}.$

Binary erosion

$$E(X,B) = \{x \in \mathbb{R}^n / B_x \subseteq X\}$$
$$= \{x / \forall y \in B, x + y \in X\} = X \ominus \check{B}.$$

Properties of erosion:

duality of erosion and dilation with respect to complementation:

$$E(X,B) = [D(X^{C},B)]^{C}$$
 (or $E(X,B) = [D(X^{C},\check{B})]^{C}$)

- anti-extensive ($E(X, B) \subseteq X$) if $O \in B$;
- increasing $(X \subseteq Y \Rightarrow E(X, B) \subseteq E(Y, B));$
- $B \subseteq B' \Rightarrow E(X, B') \subseteq E(X, B);$
- commutes with intersection, not with union:

 $E[(X \cap Y), B] = E(X, B) \cap E(Y, B), \quad E[(X \cup Y), B] \supseteq E(X, B) \cup E(Y, B);$

- iterativity property: $E[E(X, B), B'] = E(X, B \oplus B')$.
- $D[E(X,B),B'] \subseteq E[D(X,B'),B].$

Mathematical Morphology - p.12/8

Example of erosion

Links with distances

Links with distances

Binary opening

 $X_B = D[E(X, B), \check{B}] \quad (or \ D[E(X, B), B])$

Binary opening

$X_B = D[E(X, B), \check{B}] \quad (or \ D[E(X, B), B])$

Properties of opening:

- anti-extensive $(X \supseteq X_B)$;
- increasing $(X \subseteq Y \Rightarrow X_B \subseteq Y_B)$;
- idempotent $((X_B)_B = X_B)$.
- \Rightarrow Morphological filter
 - $B \subseteq B' \Rightarrow X_{B'} \subseteq X_B;$
 - $(X_n)_{n'} = (X_{n'})_n = X_{\max(n,n')}.$

Example of opening

Binary closing

 $X^B = E[D(X, B), \check{B}] \quad (or \ E[D(X, B), B])$

Binary closing

$$X^B = E[D(X, B), \check{B}] \quad (or \ E[D(X, B), B])$$

Properties of closing:

- extensive $(X \subseteq X^B)$;
- increasing $(X \subseteq Y \Rightarrow X^B \subseteq Y^B)$;
- idempotent ($(X^B)^B = X^B$).
- \Rightarrow Morphological filter
 - $B \subseteq B' \Rightarrow X^B \subseteq X^{B'};$
 - $(X^n)^{n'} = (X^{n'})^n = X^{\max(n,n')};$
 - $X^B = [(X^C)_B]^C.$

Example of closing

Digital case

- choice of the digital grid (both for the image and the structuring element)
- translations on the grid
- same properties

From sets to functions

• subgraph of a function on \mathbb{R}^n = subset of \mathbb{R}^{n+1}

$$f_{\lambda} = \{x | f(x) \ge \lambda\}$$
$$D(f_{\lambda}, B) = [D(f, B)]_{\lambda}$$

functional equivalents of set operations:

$$\begin{array}{ccc} \cup & \rightarrow & \sup / \lor \\ \cap & \rightarrow & \inf / \land \\ \subseteq & \rightarrow & \leq \\ \supseteq & \rightarrow & \geq \end{array}$$

Dilation of a function

by a flat structuring element

 $\forall x \in \mathbb{R}^n, \ D(f, B)(x) = \sup\{f(y) \mid y \in B_x\}$

Dilation of a function

by a flat structuring element

 $\forall x \in \mathbb{R}^n, \ D(f, B)(x) = \sup\{f(y) \mid y \in B_x\}$

Properties of functional dilation:

- extensivity if $O \in B$;
- increasingness;
- $D(f \lor g, B) = D(f, B) \lor D(g, B);$
- $D(f \wedge g, B) \leq D(f, B) \wedge D(g, B);$
- iterativity property.

It holds:

 $D(f_{\lambda}, B) = [D(f, B)]_{\lambda}$

Example of functional dilation

Erosion of a function

 $\forall x \in \mathbb{R}^n, \ E(f, B)(x) = \inf\{f(y) \mid y \in B_x\}$

Erosion of a function

 $\forall x \in \mathbb{R}^n, \ E(f,B)(x) = \inf\{f(y) \mid y \in B_x\}$

Properties of functional erosion:

- functional dilation and erosion are dual operators;
- anti-extensivity if $O \in B$;
- increasingness;
- $E(f \lor g, B) \ge E(f, B) \lor E(g, B);$
- $E(f \wedge g, B) = E(f, B) \wedge E(g, B);$
- iterativity property.

Example of functional erosion

Functional opening

$$f_B = D[E(f, B), \check{B}]$$

Functional opening

 $f_B = D[E(f, B), \check{B}]$

Properties of functional opening:

- anti-extensive;
- increasing;
- idempotent.
- \Rightarrow morphological filter

Example of functional opening

Functional closing

$$f^B = E[D(f, B), \check{B}]$$
Functional closing

 $f^B = E[D(f, B), \check{B}]$

Properties of functional closing:

- extensive;
- increasing;
- idempotent.
- \Rightarrow morphological filter
 - duality between opening and closing

Example of functional closing

Structuring functions

Dilation:

$$D(f,g)(x) = \sup_{y} \{f(y) + g(y-x)\}$$

Erosion:

$$E(f,g)(x) = \inf_{y} \{f(y) - g(y-x)\}$$

Flat structuring element:

$$g(x) = \begin{cases} 0 & \text{on a compact } B \\ -\infty & \text{elsewhere} \end{cases}$$

Contrast enhancement

Contrast enhancement: ES 15, $\alpha = \beta = 0.2$, $\alpha = \beta = 0.3$, $\alpha = \beta = 0.5$

Mathematical Morphology – p.30/8-

Contrast enhancement: ES 30, $\alpha = \beta = 0.2$, $\alpha = \beta = 0.3$, $\alpha = \beta = 0.5$

Mathematical Morphology – p.30/8-

Morphological gradient: $D_B(x) - E_B(x)$

Ultimate erosion:

 $EU(X) = \bigcup_n \{ E(X, B_n) \setminus R[E(X, B_{n+1}); E(X, B_n)] \}$

- $E(X, B_n)$: erosion of X by a structuring element of size n
- R[Y;Z]: connected components of Z having a non-empty intersection with Y
- = set of regional maxima of the distance function $d(x, X^C)$.

An application of opening: top-hat transform

An application of opening: top-hat transform

An application of opening: top-hat transform

Granulometry

- $\forall X \in \mathcal{A}, \forall \lambda > 0, \phi_{\lambda}(X) \subseteq X$ (ϕ_{λ} anti-extensive);
- $\forall (X,Y) \in \mathcal{A}^2, \forall \lambda > 0, X \subseteq Y \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\lambda}(Y)$ (ϕ_{λ} increasing);
- $\forall X \in \mathcal{A}, \forall \lambda > 0, \forall \mu > 0 \ \lambda \ge \mu \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\mu}(X)$ (ϕ_{λ} decreasing with respect to the parameter);
- $\forall \lambda > 0, \forall \mu > 0, \ \phi_{\lambda} \circ \phi_{\mu} = \phi_{\mu} \circ \phi_{\lambda} = \phi_{\max(\lambda,\mu)}.$

Granulometry

- $\forall X \in \mathcal{A}, \forall \lambda > 0, \phi_{\lambda}(X) \subseteq X$ (ϕ_{λ} anti-extensive);
- $\forall (X,Y) \in \mathcal{A}^2, \forall \lambda > 0, X \subseteq Y \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\lambda}(Y)$ (ϕ_{λ} increasing);
- $\forall X \in \mathcal{A}, \forall \lambda > 0, \forall \mu > 0 \ \lambda \ge \mu \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\mu}(X)$ (ϕ_{λ} decreasing with respect to the parameter);
- $\forall \lambda > 0, \forall \mu > 0, \ \phi_{\lambda} \circ \phi_{\mu} = \phi_{\mu} \circ \phi_{\lambda} = \phi_{\max(\lambda,\mu)}.$

 (ϕ_{λ}) is a granulometry iff ϕ_{λ} is an opening for each λ and the class of subsets \mathcal{A} which are invariant under ϕ_{λ} is included in the class of subsets which are invariant under ϕ_{μ} for $\lambda \geq \mu$

Granulometry

- $\forall X \in \mathcal{A}, \forall \lambda > 0, \phi_{\lambda}(X) \subseteq X$ (ϕ_{λ} anti-extensive);
- $\forall (X,Y) \in \mathcal{A}^2, \forall \lambda > 0, X \subseteq Y \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\lambda}(Y)$ (ϕ_{λ} increasing);
- $\forall X \in \mathcal{A}, \forall \lambda > 0, \forall \mu > 0$ $\lambda \ge \mu \Rightarrow \phi_{\lambda}(X) \subseteq \phi_{\mu}(X)$ (ϕ_{λ} decreasing with respect to the parameter);
- $\forall \lambda > 0, \forall \mu > 0, \ \phi_{\lambda} \circ \phi_{\mu} = \phi_{\mu} \circ \phi_{\lambda} = \phi_{\max(\lambda,\mu)}.$

 (ϕ_{λ}) is a granulometry iff ϕ_{λ} is an opening for each λ and the class of subsets \mathcal{A} which are invariant under ϕ_{λ} is included in the class of subsets which are invariant under ϕ_{μ} for $\lambda \geq \mu$

Vectorial functions (e.g. color images)

- Main difficulty: choice of an ordering
- component-wise max (or min): no good properties

Dilation

- depends on what one wants suppress / keep
- shape
- size

- depends on what one wants suppress / keep
- shape
- size

- depends on what one wants suppress / keep
- shape
- size

- depends on what one wants suppress / keep
- shape
- size

Surfacic opening

$$\gamma_{\lambda}(f) = \bigvee_{i} \{ \gamma_{B_{i}}(f), B_{i} \text{ connected and } S(B_{i}) = \lambda \}$$

Surfacic opening

Surfacic opening

Mathematical fundaments of mathematical morphology

- Set theory
 - relations (\subseteq , \cap , \cup ...)
 - structuring element
- Topology
 - hit-or-miss topology (Fell's topology)
 - myopic topology
 - Hausdorff distance
- Lattice theory
 - adjunctions
 - algebraic operations
- Probability theory
 - $P(A \cap K \neq \emptyset)$
 - random closed sets

Hit-or-miss topology

- topology on closed subsets
- generated by \mathcal{F}^K and \mathcal{F}_G (*K* compact and *G* open):

$$\mathcal{F}^K = \{ F \in \mathcal{F}, F \cap K = \emptyset \}$$

$$\mathcal{F}_G = \{ F \in \mathcal{F}, F \cap G \neq \emptyset \}$$

• convergence in \mathcal{F} : $(F_n)_{n \in \mathbb{N}}$ converges towards $F \in \mathcal{F}$ if:

$$\begin{cases} \forall G \in \mathcal{G}, G \cap F \neq \emptyset, \exists N, \forall n \ge N, \ G \cap F_n \neq \emptyset \\ \forall K \in \mathcal{K}, K \cap F = \emptyset, \exists N', \forall n \ge N', \ K \cap F_n = \emptyset \end{cases}$$

Hit-or-miss topology

- topology on closed subsets
- generated by \mathcal{F}^K and \mathcal{F}_G (K compact and G open):

$$\mathcal{F}^K = \{F \in \mathcal{F}, F \cap K = \emptyset\}$$

$$\mathcal{F}_G = \{ F \in \mathcal{F}, F \cap G \neq \emptyset \}$$

• convergence in \mathcal{F} : $(F_n)_{n \in \mathbb{N}}$ converges towards $F \in \mathcal{F}$ if:

$$\begin{cases} \forall G \in \mathcal{G}, G \cap F \neq \emptyset, \exists N, \forall n \ge N, \ G \cap F_n \neq \emptyset \\ \forall K \in \mathcal{K}, K \cap F = \emptyset, \exists N', \forall n \ge N', \ K \cap F_n = \emptyset \end{cases}$$

Union is continuous from $\mathcal{F} \times \mathcal{F}$ in \mathcal{F} but intersection is not \Downarrow semi-continuity

Semi-continuity

 $f:\Omega\to\mathcal{F}$

• f upper semi-continuous (u.s.c.) if $\forall \omega \in \Omega$ and $\forall (\omega_n)_{n \in \mathbb{N}} \in \Omega$ converging towards ω :

$$\overline{lim}f(\omega_n) \subseteq f(\omega)$$

• *f* lower semi-continuous (l.s.c.) if:

$$\underline{lim}f(\omega_n) \supseteq f(\omega)$$

 $\overline{lim}/\underline{lim} = \cup \cap$ of adherence points

f continuous iff f l.s.c. and u.s.c.

Intersection is u.s.c.

Properties of morphological operations

- the dilation of a closed set by a compact set is continuous
- the dilation of a compact set by a compact set is continuous
- $(F, K) \mapsto E(F, K)$ u.s.c.
- $(K',K)\mapsto E(K',K)$ U.S.C.
- $(F,K) \mapsto F_K$ U.S.C.
- ${}^{\bullet} \ \ (K',K)\mapsto K'_K \text{ u.s.c.}$
- $(F, K) \mapsto F^K$ u.s.c.
- $(K',K)\mapsto K'^K$ U.S.C.

Myopic topology

• generated by:

$$\mathcal{K}_G^F = \{K \in \mathcal{K}, K \cap F = \emptyset, K \cap G \neq \emptyset\}$$

 $(F \in \mathcal{F}, G \in \mathcal{G})$

- finer than the topology induced on \mathcal{K} by the hit-or-miss topology
- equivalent on $\mathcal{K} \setminus \emptyset$ to the topology induced by the Hausdorff distance

$$\delta(K, K') = \max\{\sup_{x \in K} d(x, K'), \sup_{x' \in K'} d(x', K)\}\$$

 $\mathsf{Rq:}\ \delta(K,K') = \inf\{\varepsilon,\ K \subseteq D(K',B^{\varepsilon}), K' \subseteq D(K,B^{\varepsilon})\}$

Algebraic framework: complete lattices

- Lattice: (\mathcal{T}, \leq) (\leq ordering) such that $\forall (x, y) \in \mathcal{T}, \exists x \lor y$ and $\exists x \land y$
- Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound
- \Rightarrow contains a smallest element 0 and a largest element *I*:

$$0 = \bigwedge \mathcal{T} = \bigvee \emptyset \text{ et } I = \bigvee \mathcal{T} = \bigwedge \emptyset$$

- Examples of complete lattices:
 - $(\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive):

$$\forall x, \exists x^C, x \wedge x^C = 0 \text{ and } x \vee x^C = I$$

$$x \land (y \lor z) = (x \land y) \lor (x \land z) \text{ and } x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

- $(\mathcal{F}(\mathbb{R}^d), \subseteq)$
- functions of \mathbb{R}^n in $\overline{\mathbb{R}}$ for the ordering \leq :

$$f \le g \Leftrightarrow \forall x \in \mathbb{R}^n, \ f(x) \le g(x)$$

partitions

Semi-continuity of functions

• U.S.C. :

$$\forall t > f(x), \exists V(x), \forall y \in V(x), \ t > f(y)$$

 $(V(x) \text{ neighborhood of } x \text{ in } \mathbb{R}^n)$

• I.s.c. :

$$\forall t < f(x), \exists V(x), \forall y \in V(x), t < f(y)$$

- a function is u.s.c. iff its sub-graph is closed
- topology on the space of u.s.c. functions = topology induced by the hit-or-miss topology on $\mathcal{F}(\mathbb{R}^n \times \overline{\mathbb{R}})$
- the set of u.s.c. functions of \mathbb{R}^n in $\overline{\mathbb{R}}$ is a complete lattice for \leq :

 $f \leq g \Leftrightarrow SG(f) \subseteq SG(g)$

Algebraic dilation and erosion

complete lattice (\mathcal{T},\leq)

Algebraic dilation:

$$\forall (x_i) \in \mathcal{T}, \ \delta(\lor_i x_i) = \lor_i \delta(x_i)$$

Algebraic erosion:

$$\forall (x_i) \in \mathcal{T}, \ \varepsilon(\wedge_i x_i) = \wedge_i \varepsilon(x_i)$$

Properties:

- $\delta(0) = 0$ (in $\mathcal{P}(E), 0 = \emptyset$)
- $\varepsilon(I) = I$ (in $\mathcal{P}(E), I = E$)
- δ increasing
- ε increasing
- in $\mathcal{P}(\mathbb{R}^n)$, $\delta(X) = \cup_{x \in X} \delta(\{x\})$

Adjunctions

 (ε, δ) adjunction on (\mathcal{T}, \leq) :

 $\forall (x,y), \; \delta(x) \leq y \Leftrightarrow x \leq \varepsilon(y)$

Properties:

- $\delta(0) = 0$ and $\varepsilon(I) = I$
- (ε, δ) adjunction $\Rightarrow \varepsilon$ = algebraic erosion and δ = algebraic dilation
- δ increasing = algebraic dilation iff $\exists \varepsilon$ such that (ε, δ) is an adjunction $\Rightarrow \varepsilon$ = algebraic erosion and $\varepsilon(x) = \bigvee \{y \in \mathcal{T}, \ \delta(y) \leq x\}$
- ε increasing = algebraic erosion iff $\exists \delta$ such that (ε, δ) is an adjunction $\Rightarrow \delta$ = algebraic dilation and $\delta(x) = \bigwedge \{y \in \mathcal{T}, \ \varepsilon(y) \ge x\}$
- $\varepsilon \delta \ge Id$
- $\delta \varepsilon \leq Id$
- $\varepsilon \delta \varepsilon = \varepsilon$
- $\delta \varepsilon \delta = \delta$
- $\varepsilon \delta \varepsilon \delta = \varepsilon \delta$ and $\delta \varepsilon \delta \varepsilon = \delta \varepsilon$

Links with morphological operators

• On the lattice of the subsets of \mathbb{R}^n or \mathbb{Z}^n , with inclusion:

 $\delta(X) = \cup_{x \in X} \delta(\{x\})$

- + invariance under translation $\Rightarrow \exists B, \ \delta(X) = D(X, B)$
- Same result on the lattice of functions.
- Similar results for erosion.

Algebraic opening and closing

- Algebraic opening: γ increasing, idempotent and anti-extensive
- Algebraic closing: φ increasing, idempotent and extensive
- Examples: $\gamma = \delta \varepsilon$ and $\varphi = \varepsilon \delta$ with (ε, δ) = adjunction
- Invariance domain: $Inv(\varphi) = \{x \in \mathcal{T}, \ \varphi(x) = x\}$
- $\gamma \text{ opening} \Rightarrow \gamma(x) = \bigvee \{y \in Inv(\gamma), y \leq x\}$
- φ closing $\Rightarrow \varphi(x) = \bigwedge \{ y \in Inv(\varphi), \ x \leq y \}$
- (γ_i) openings $\Rightarrow \bigvee_i \gamma_i$ opening
- (φ_i) closings $\Rightarrow \bigwedge_i \varphi_i$ closing
- γ_1 and γ_2 openings \Rightarrow equivalence between:
 - 1. $\gamma_1 \leq \gamma_2$
 - $2. \quad \gamma_1\gamma_2=\gamma_2\gamma_1=\gamma_1$
 - **3.** $Inv(\gamma_1) \subseteq Inv(\gamma_2)$
- φ_1 and φ_2 closings \Rightarrow equivalence between:
 - 1. $\varphi_2 \leq \varphi_1$
 - $2. \quad \varphi_1\varphi_2=\varphi_2\varphi_1=\varphi_1$
 - **3.** $Inv(\varphi_1) \subseteq Inv(\varphi_2)$

Algebraic filter theory

Filter = increasing and idempotent operator

Examples

- openings γ and $\bigvee_i \gamma_i$ (anti-extensive filters)
- closings φ and $\bigwedge_i \varphi_i$ (extensive filters)

Theorem on filter composition φ and ψ such that $\varphi \geq \psi$:

- $\varphi \ge \varphi \psi \varphi \ge \varphi \psi \lor \psi \varphi \ge \varphi \psi \land \psi \varphi \ge \psi \varphi \psi \ge \psi$
- $\varphi\psi$, $\psi\varphi$, $\varphi\psi\varphi$ and $\psi\varphi\psi$ are filters
- $Inv(\varphi\psi\varphi) = Inv(\varphi\psi)$ and $Inv(\psi\varphi\psi) = Inv(\psi\varphi)$
- $\varphi\psi\varphi$ is the smallest filter which is largest than $\varphi\psi\lor\psi\varphi$
Example: alternate sequential filters

• openings γ_i and closings φ_i such that:

$$i \leq j \Rightarrow \gamma_j \leq \gamma_i \leq Id \leq \varphi_i \leq \varphi_j$$

- Theorem on filter composition $\Rightarrow m_i = \gamma_i \varphi_i$, $n_i = \varphi_i \gamma_i$, $r_i = \varphi_i \gamma_i \varphi_i$ and $s_i = \gamma_i \varphi_i \gamma_i$ are filters
- Alternate sequential filters:

$$M_{i} = m_{i}m_{i-1}...m_{2}m_{1}$$

$$N_{i} = n_{i}n_{i-1}...n_{2}n_{1}$$

$$R_{i} = r_{i}r_{i-1}...r_{2}r_{1}$$

$$S_{i} = s_{i}s_{i-1}...s_{2}s_{1}$$

• Property:
$$i \leq j \Rightarrow M_j M_i = M_j, N_j N_i = N_j, ...$$

Morphological alternate sequential filters

 $(...(((f_{B_1})^{B_1})_{B_2})^{B_2})..._{B_n})^{B_n}$

Morphological alternate sequential filters

Morphological alternate sequential filters

$(...(((f_{B_1})^{B_1})_{B_2})^{B_2})..._{B_n})^{B_n}$

Auto-dual filters

- Operators which are independent of the local contrast, acting similarly on bright and dark areas.
- Example: morphological center

 $Median[f(x), \psi_1(f)(x), \psi_2(f)(x)]$

- More generally, for operators $\{\psi_1, \psi_2, ..., \psi_n\}$: $(Id \lor \land_i \psi_i) \land \lor_i \psi_i$
- For instance $\psi_1(f) = \gamma \varphi(f) = (f^B)_B$, $\psi_2 = \varphi \gamma(f) = (f_B)^B$

Auto-dual filters

- Operators which are independent of the local contrast, acting similarly on bright and dark areas.
- Example: morphological center

$$Median[f(x), \psi_1(f)(x), \psi_2(f)(x)]$$

- More generally, for operators $\{\psi_1, \psi_2, ... \psi_n\}$: $(Id \lor \land_i \psi_i) \land \lor_i \psi_i$
- For instance $\psi_1(f) = \gamma \varphi(f) = (f^B)_B$, $\psi_2 = \varphi \gamma(f) = (f_B)^B$

Morphological center: numerical example

Morphological center: numerical example

Morphological center: numerical example

Hit-or-Miss Transformation

Structuring element: $T = (T_1, T_2)$, with $T_1 \cap T_2 = \emptyset$

HMT:

$$X \otimes T = E(X, T_1) \cap E(X^C, T_2)$$

Hit-or-Miss Transformation

Structuring element: $T = (T_1, T_2)$, with $T_1 \cap T_2 = \emptyset$

HMT:

 $X \otimes T = E(X, T_1) \cap E(X^C, T_2)$

Thinning (if $O \in T_1$):

 $X \circ T = X \setminus X \otimes T$

Thickening (if $O \in T_2$):

 $X \odot T = X \cup X \otimes T$

For $T' = (T_2, T_1)$:

$$X \circ T = (X^C \odot T')^C$$

HMT: examples

HMT: examples

Skeleton: requirements

- compact representation of objects
- thin lines
- included and centered in the object
- homotopic to the object
- good representation of the geometry
- invertible (reconstruction of the initial object)

Skeleton: continuous case

A: open set $s_{\rho}(A)$ = set of centers of maximal balls of *A* of radius ρ

Skeleton:

$$r(A) = \bigcup_{\rho > 0} s_{\rho}(A)$$

Characterization:

$$s_{\rho}(A) = \bigcap_{\mu > 0} [E(A, B_{\rho}) \setminus [E(A, B_{\rho})]_{\bar{B}_{\mu}}]$$

$$r(A) = \bigcup_{\rho>0} \bigcap_{\mu>0} [E(A, B_{\rho}) \setminus [E(A, B_{\rho})]_{\bar{B}_{\mu}}]$$

Reconstruction:

$$A = \bigcup_{\rho > 0} D(s_{\rho}, B_{\rho})$$

Properties of the continuous skeleton

- $s_{\rho}(E_{\rho_0}(A)) = s_{\rho+\rho_0}(A) \implies r(E_{\rho_0}(A)) = \bigcup_{\rho > \rho_0} s_{\rho}(A)$
- no general formula for the skeleton of the dilation, opening or closing of a set
- $A \mapsto \overline{r}(A)$ is l.s.c. from \mathcal{G} in \mathcal{F}
- A connected $\Rightarrow \bar{r}(A)$ connected
- the skeleton is "thin": its interior is empty

Skeleton: digital case

• Direct transposition of the continuous case:

$$S(X) = \bigcup_{n \in \mathbb{N}} [E(X, B_n) \setminus E(X, B_n)_B]$$

Properties:

- centers of digital maximal balls
- reconstuction
- but poor connectivity properties

Skeleton: digital case

Direct transposition of the continuous case:

$$S(X) = \bigcup_{n \in \mathbb{N}} [E(X, B_n) \setminus E(X, B_n)_B]$$

Properties:

- centers of digital maximal balls
- reconstuction
- but poor connectivity properties
- Skeleton from homotopic thinning

Properties:

- perfect topology
- no reconstruction

Centers of maximal ball vs thinning

Centers of maximal ball vs thinning

Mathematical Morphology - p.58/84

Centers of maximal ball vs thinning

ת וכי המכרו ממכר לעמיתך זרארתו וכי המכרו ממכר לעמיח ד אל תונו איש את אוזיו במיתך אל תונו איש את אוזי ב אר האבל הלגה מאת למיתים אחר היובל תכנה מאת למי ית למכרלך למרב המצהב נכואת ימכר לך למי רב השצו ימי העני השנים תמשה להם ל **רכי מעני השנים תמשי מ** מאת הזא מכרלך ולאתנו רתכואת הוא מכרלך ולאת את מאלהיך כיאלי והוה אז ויראת מאלהיך כיאני יהוה את הקתי ואת משפטי תם את הקתי ואת משפטי תש ארוב השכתם על הארץ כייתם אתם ושבתם על הארץ כ ארק פריה ואכלהם לשבע היה הארץ פריה ואכלתם לשבע

Centers of maximal ball vs thinning

We and I want the set of a start of the second of the ת וכי תמסרו בתכר ללמיתך זרודתו וכי תמכרו ממכר ללמיח דך אל תונו איש את אוליו בב נמיתך אל תונו איש את ארו ג אר האבל תכנה מאת למיתים אאר היובל תכנה מאת למי זת למכרלך לפירבה שלים נכואת ימכרלך לפירב השליו לי מעט המצים תמליט מכן. זו ולפי מעט השנים תמעיט מי אז אות ואיז קבר לי ול אוז יות יתכואת הוא מכר לך ולאתו אלת מאצאייך כי אצי יהוד אז נוויראת מאלידיך כי אני יהוד את הוקתי זאת משפטי השמר עם את הוקתי ואת משפטי רושו איז לישברום על הארץ כרתם אתם וישברום על הארץ כ ארא פרידה ואכרלינם לשבל והיה הארץ פרידה ואכריתם לשבע

Centers of maximal ball vs thinning

13 BN (17 Zad) תוובי תמסוגמתר לעמיתך גרודתווכי תמכרו ממכר לעמיח זך אל תונן איש את אוזיו במיתך אל תוני איש את ארויו ב אר האכל תכנה מאת למיתים אאר הזובר תכנה מאת למי את אמכרלך לפירב השנים נכואת ימכרלך לפירב השנינ לבי מעט המצים תמעיש מכן ז ולפי מעט השצים תמעיש מי את הוא פכר לך ולא תוני ריתכואת הוא מכר לך ולאתו אח מאלהיך כי אנו והוה אז ויראת מאלהיך כי אני יהוח את הקתי זאת משפני תשאת רושת הקתי זאת משפני רוש אתם וישבתם על הארא כ- תם אתם וישבתם על הארץ כ אין פריה ואכרהנס לשבע וזוה הארץ פריה ואכרתם לשבע

Brain Segmentation using 3-D Mathematical Morphology

SAGITTAL

AXIAL

CORONAL

Detection of the "Gray / White" Interface.

SAGITTAL

AXIAL

Simple Surfaces of the 3-D Skeleton

SAGITTAL

AXIAL

CORONAL

Geodesic operators

Geodesic distance, conditional to X: d_X

- if X is closed, there exits a geodesic arc for any pair of points of X
- unique if X is simply connected
- $X \text{ convex} \Leftrightarrow d_X = d$

Geodesic ball: $B_X(x,r) = \{y \in X / d_X(x,y) \le r\}$ Rq: $B_X(x,r) \subseteq B(x,r)$

Geodesic dilation:

$$D_X(Y, B_r) = \{ x \in \mathbb{R}^n / B_X(x, r) \cap Y \neq \emptyset \} = \{ x \in \mathbb{R}^n / d_X(x, Y) \le r \}$$

Geodesic erosion:

$$E_X(Y, B_r) = \{ x \in \mathbb{R}^n / B_X(x, r) \subseteq Y \} = X \setminus D_X(X \setminus Y, B_r)$$

Geodesic opening and closing: by composition

Properties and reconstruction

Properties:

- similar as in the Euclidean case
- $D_X(Y, B_r) \subseteq D(Y, B_r)$

•
$$D_X(Y, B_r) = \bigcap_{n=1}^{\infty} [(Y \oplus \frac{r}{n}B) \cap X]^n$$

Digital case:

 $D_X(Y, B_r) = [D(Y, B_1) \cap X]^r$

Reconstruction:

$$[D(Y, B_1) \cap X]^{\infty} = D_X^{\infty}(Y)$$

= connected components of X which intersect Y

Binary reconstruction: example

Binary reconstruction: example

Binary reconstruction: example

Geodesic operators on functions

 $X_1 \subseteq X_2 \text{ and } Y_1 \subseteq Y_2 \ \Rightarrow \ D_{X_1}(Y_1, B_r) \subseteq D_{X_2}(Y_1, B_r) \subseteq D_{X_2}(Y_2, B_r)$

 \Rightarrow Extension to functions, for $f \leq g$, cut by cut:

$$[D_g(f, B_r)]_{\lambda} = D_{g_{\lambda}}(f_{\lambda}, B_r)$$

(with $f_{\lambda} = \{x, f(x) \ge \lambda\}$)

Digital case:

 $D_g(f, B_r) = [D(f, B_1) \land g]^r$

 $E_g(f, B_r) = [E(f, B_1) \lor g]^r$

Numerical reconstruction of f (marker function) in g:

- by dilation $D_g(f, B_\infty) = D_g^\infty(f)$: opening
- by erosion $E_g(f, B_\infty)$: closing
- opening by reconstruction: $D_f^{\infty}(f_B)$ (flat areas whose contours are some contours of the original image \Rightarrow compression)

Mathematical Morphology - p.64/8-

Opening by reconstruction: examples

Opening by reconstruction: examples

Union of openings by segments of length 20 and reconstruction

ASF with an hexagon (maximal size = 1)

ASF with an hexagon (maximal size = 3)

ASF with an hexagon (maximal size = 5)

ASF with an hexagon (maximal size = 9)

ASF with segments (maximal size = 1)

ASF with segments (maximal size = 3)

ASF with segments (maximal size = 5)

ASF with segments (maximal size = 9)

Regional maxima

X regional maximum of f if

$$\forall x \in X, f(x) = \lambda \text{ et } X = CC(f_{\lambda})$$

Computation of regional maxima:

$$f - D_f^{\infty}(f - 1)$$

h-maxima (grey level dynamics):

$$f - D_f^{\infty}(f - h)$$

 \Rightarrow robust maxima

Regional maxima: example

Robust maxima: example

Skeleton by influence zones

 $X = \bigcup_i X_i$

Influence zone of X_i in X^C :

$$ZI(X_i) = \{ x \in X^C / d(x, X_i) < d(x, X \setminus X_i) \}$$

Skeleton by influence zones:

$$\operatorname{Skiz}(X) = (\bigcup_{i} ZI(X_i))^C$$

= generalized Voronoï diagram

Properties:

- $\mathsf{Skiz}(X) \subseteq Skel(X^C)$
- Skiz is not necessarily connected (even if X^C is)

Skeleton by influence zones: examples

Skeleton by influence zones: examples

Skeleton and skeleton by influence zones

Skeleton and skeleton by influence zones

$\mathsf{Skiz}(X) \subseteq r(X^C)$

Geodesic skeleton by influence zones

 $Y = \cup_i Y_i$

Geodesic influence zone of Y_i conditionally to X:

$$ZI_X(Y_i) = \{x \in X, d_X(x, Y_i) < d_X(x, Y \setminus Y_i)\}$$

Geodesic skeleton by influence zones:

Cortex segmentation (**PhD of Arnaud Cachia**)

Cortex segmentation (**PhD of Arnaud Cachia**)

Parcellisation volumique (diagramme de Voronoï calculé dans le ruban cortical 3D)

Watersheds

Watersheds: definition

Steepest descent:

$$Desc(x) = \max\{\frac{f(x) - f(y)}{d(x, y)}, y \in V(x)\}$$

Ramp of a path $\pi = (x_0, ... x_n)$:

$$T_f(\pi) = \sum_{i=1}^n d(x_{i-1}, x_i) Cost(x_{i-1}, x_i)$$

with

$$Cost(x,y) = \begin{cases} Desc(x) & \text{if } f(x) > f(y) \\ Desc(y) & \text{if } f(y) > f(x) \\ (Desc(x) + Desc(y))/2 & \text{if } f(y) = f(x) \end{cases}$$

Watersheds: definition

Topographic distance

$$T_f(x,y) = \inf\{T_f(\pi), \pi = (x_0 = x, x_1, ..., x_n = y)\}$$

(equals 0 on a plateau)

Catchment basin associated to the regional minimum M_i :

$$BV(M_i) = \{x, \forall j \neq i, T_f(x, M_i) < T_f(x, M_j)\}$$

Watersheds:

 $LPE(f) = [\cup_i BV(M_i)]^C$

Approach by immersion

Construction of the watersheds

f such that $f(x) \in [h_{\min}, h_{\max}]$, $f^h = \{x, f(x) \le h\}$

$$X_{h_{\min}} = f^{h_{\min}}$$

$$X_{h+1} = MinReg_{h+1}(f) \cup ZI_{f^{h+1}}(X_h)$$

$$BV = X_{h_{\max}}$$

$$LPE(f) = X_{h_{\max}}^C$$

Watersheds and oversegmentation

Watersheds and oversegmentation

Geodesic erosion

in order to impose markers

Watersheds constraint by markers

f: function on which watersheds should be applied *g*: marker function (selects regional minima) Reconstruction: $E_{f \wedge g}(g, B_{\infty})$ (only the selected minima)

Separation of connected binary objects

And much more...