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Shape or spatial relations?
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Simplifying and selecting relevant information...
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Introduction

• Origin: study of porous media

• Principle: study of objects (images) based on:
• shape, geometry, topology
• grey levels, colors
• neighborhood information

• Mathematical bases:
• set theory
• topology
• geometry
• algebra (lattice theory)
• probabilities, random closed sets
• functions

• Main characteristics:
• non linear
• non invertible
• strong properties
• associated algorithms
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Tools for

• filtering

• segmentation

• measures (distances, granulometry, integral geometry, topology, stochastic
processes...)

• texture analysis

• shape recognition

• scene interpretation

• ...

Applications in numerous domains
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Example
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Example
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Four fundamental principles

1. Compatibility with translations

2. Compatibility with scaling

3. Local knowledge

4. Continuity (semi-continuity)
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Structuring element

• shape

• size
• origin (not necessarily in B)

• examples:

Continuous: Digital:
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Binary dilation

• Minkowski addition:
X ⊕ Y = {x+ y / x ∈ X, y ∈ Y }

• Binary dilation:

D(X,B) = X ⊕ B̌ = {x+ y / x ∈ X, y ∈ B̌} (or = X ⊕B)

=
⋃

x∈X

B̌x = {x ∈ R
n / Bx ∩X 6= ∅}

Properties of dilation:

• extensive (X ⊆ D(X,B)) if O ∈ B;

• increasing (X ⊆ Y ⇒ D(X,B) ⊆ D(Y,B));

• B ⊆ B′ ⇒ D(X,B) ⊆ D(X,B′);

• commutes with union, not with intersection:

D(X ∪ Y,B) = D(X,B) ∪D(Y,B), D(X ∩ Y,B) ⊆ D(X,B) ∩D(Y,B);

• iterativity property: D[D(X,B), B′] = D(X,B ⊕B′).
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Example of dilation
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Binary erosion

E(X,B) = {x ∈ R
n / Bx ⊆ X}

= {x / ∀y ∈ B, x+ y ∈ X} = X 	 B̌.

Properties of erosion:

• duality of erosion and dilation with respect to complementation:

E(X,B) = [D(XC , B)]C (or E(X,B) = [D(XC , B̌)]C)

• anti-extensive (E(X,B) ⊆ X) if O ∈ B;

• increasing (X ⊆ Y ⇒ E(X,B) ⊆ E(Y,B));

• B ⊆ B′ ⇒ E(X,B′) ⊆ E(X,B);

• commutes with intersection, not with union:

E[(X ∩ Y ), B] = E(X,B) ∩ E(Y,B), E[(X ∪ Y ), B] ⊇ E(X,B) ∪ E(Y,B);

• iterativity property: E[E(X,B), B′] = E(X,B ⊕B′).

• D[E(X,B), B′] ⊆ E[D(X,B′), B].
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Example of erosion
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Links with distances
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Links with distances
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Binary opening

XB = D[E(X,B), B̌] (or D[E(X,B), B])

Properties of opening:

• anti-extensive (X ⊇ XB);

• increasing (X ⊆ Y ⇒ XB ⊆ YB);

• idempotent ((XB)B = XB).

⇒ Morphological filter

• B ⊆ B′ ⇒ XB′ ⊆ XB ;

• (Xn)n′ = (Xn′ )n = Xmax(n,n′).
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Example of opening

Mathematical Morphology – p.16/84



Binary closing

XB = E[D(X,B), B̌] (or E[D(X,B), B])

Properties of closing:

• extensive (X ⊆ XB);

• increasing (X ⊆ Y ⇒ XB ⊆ Y B);

• idempotent ((XB)B = XB).

⇒ Morphological filter

• B ⊆ B′ ⇒ XB ⊆ XB′

;

• (Xn)n′

= (Xn′

)n = Xmax(n,n′);

• XB = [(XC)B ]C .

Mathematical Morphology – p.17/84



Binary closing

XB = E[D(X,B), B̌] (or E[D(X,B), B])

Properties of closing:

• extensive (X ⊆ XB);

• increasing (X ⊆ Y ⇒ XB ⊆ Y B);

• idempotent ((XB)B = XB).

⇒ Morphological filter

• B ⊆ B′ ⇒ XB ⊆ XB′

;

• (Xn)n′

= (Xn′

)n = Xmax(n,n′);

• XB = [(XC)B ]C .
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Example of closing
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Digital case

• choice of the digital grid (both for the image and the structuring element)

• translations on the grid

• same properties
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From sets to functions

• subgraph of a function on R
n = subset of R

n+1

• cuts of a function = sets
fλ = {x|f(x) ≥ λ}

D(fλ, B) = [D(f,B)]λ

• functional equivalents of set operations:

∪ → sup / ∨

∩ → inf / ∧

⊆ → ≤

⊇ → ≥
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Dilation of a function

by a flat structuring element

∀x ∈ R
n, D(f,B)(x) = sup{f(y) / y ∈ Bx}

Properties of functional dilation:

• extensivity if O ∈ B;

• increasingness;

• D(f ∨ g,B) = D(f,B) ∨D(g,B);

• D(f ∧ g,B) ≤ D(f,B) ∧D(g,B);

• iterativity property.

It holds:
D(fλ, B) = [D(f,B)]λ
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Example of functional dilation
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Erosion of a function

∀x ∈ R
n, E(f,B)(x) = inf{f(y) / y ∈ Bx}

Properties of functional erosion:

• functional dilation and erosion are dual operators;

• anti-extensivity if O ∈ B;

• increasingness;

• E(f ∨ g,B) ≥ E(f,B) ∨ E(g,B);

• E(f ∧ g,B) = E(f,B) ∧ E(g,B);

• iterativity property.
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Example of functional erosion
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Functional opening

fB = D[E(f,B), B̌]

Properties of functional opening:

• anti-extensive;
• increasing;

• idempotent.

⇒ morphological filter
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Example of functional opening

Mathematical Morphology – p.26/84



Functional closing

fB = E[D(f,B), B̌]

Properties of functional closing:

• extensive;
• increasing;

• idempotent.

⇒ morphological filter

• duality between opening and closing
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Functional closing

fB = E[D(f,B), B̌]

Properties of functional closing:

• extensive;
• increasing;

• idempotent.

⇒ morphological filter

• duality between opening and closing
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Example of functional closing
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Structuring functions

Dilation:

D(f, g)(x) = sup
y
{f(y) + g(y − x)}

Erosion:

E(f, g)(x) = inf
y
{f(y)− g(y − x)}

Flat structuring element:

g(x) =

{

0 on a compact B
−∞ elsewhere
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Some applications of erosion and dilation
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Some applications of erosion and dilation

Contrast enhancement
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Some applications of erosion and dilation

Contrast enhancement: ES 15, α = β = 0.2, α = β = 0.3, α = β = 0.5
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Some applications of erosion and dilation

Contrast enhancement: ES 30, α = β = 0.2, α = β = 0.3, α = β = 0.5
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Some applications of erosion and dilation

Morphological gradient: DB(x)− EB(x)
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Some applications of erosion and dilation

Ultimate erosion:

EU(X) = ∪n{E(X,Bn) \R[E(X,Bn+1);E(X,Bn)]}

• E(X,Bn): erosion of X by a structuring element of size n

• R[Y ;Z]: connected components of Z having a non-empty intersection with Y

= set of regional maxima of the distance function d(x,XC).
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An application of opening:

top-hat transform

f − fB
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Granulometry

• ∀X ∈ A, ∀λ > 0, φλ(X) ⊆ X (φλ anti-extensive);

• ∀(X,Y ) ∈ A2, ∀λ > 0, X ⊆ Y ⇒ φλ(X) ⊆ φλ(Y ) (φλ increasing);

• ∀X ∈ A, ∀λ > 0,∀µ > 0 λ ≥ µ⇒ φλ(X) ⊆ φµ(X) (φλ decreasing with respect
to the parameter);

• ∀λ > 0,∀µ > 0, φλ ◦ φµ = φµ ◦ φλ = φmax(λ,µ).

(φλ) is a granulometry iff φλ is an opening for each λ and the class of subsets A which
are invariant under φλ is included in the class of subsets which are invariant under φµ for
λ ≥ µ
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Vectorial functions (e.g. color images)

• Main difficulty: choice of an ordering

• component-wise max (or min): no good properties

Dilation

maximum ?
component−wise
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Choice of the structuring element

• depends on what one wants suppress / keep

• shape

• size

Example: opening by disks or segments?

Mathematical Morphology – p.34/84



Choice of the structuring element

• depends on what one wants suppress / keep

• shape

• size

Example: opening by disks or segments?

Mathematical Morphology – p.34/84



Choice of the structuring element

• depends on what one wants suppress / keep

• shape

• size

Example: opening by disks or segments?

Mathematical Morphology – p.34/84



Choice of the structuring element

• depends on what one wants suppress / keep

• shape

• size

Example: opening by disks or segments?
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Surfacic opening

γλ(f) =
∨

i

{γBi
(f), Bi connected and S(Bi) = λ}
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Surfacic opening

γλ(f) =
∨

i

{γBi
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Mathematical fundaments of mathematical

morphology

• Set theory
• relations (⊆, ∩, ∪...)
• structuring element

• Topology
• hit-or-miss topology (Fell’s topology)
• myopic topology
• Hausdorff distance

• Lattice theory
• adjunctions
• algebraic operations

• Probability theory
• P (A ∩K 6= ∅)

• random closed sets
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Hit-or-miss topology

• topology on closed subsets

• generated by FK and FG (K compact and G open):

FK = {F ∈ F , F ∩K = ∅}

FG = {F ∈ F , F ∩G 6= ∅}

• convergence in F : (Fn)n∈N converges towards F ∈ F if:

{

∀G ∈ G, G ∩ F 6= ∅,∃N, ∀n ≥ N, G ∩ Fn 6= ∅

∀K ∈ K,K ∩ F = ∅,∃N ′,∀n ≥ N ′, K ∩ Fn = ∅

Union is continuous from F × F in F but intersection is not
⇓

semi-continuity
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Semi-continuity

f : Ω → F

• f upper semi-continuous (u.s.c.) if ∀ω ∈ Ω and ∀(ωn)n∈N ∈ Ω converging towards
ω :

limf(ωn) ⊆ f(ω)

• f lower semi-continuous (l.s.c.) if:

limf(ωn) ⊇ f(ω)

lim/lim = ∪/∩ of adherence points

f continuous iff f l.s.c. and u.s.c.

Intersection is u.s.c.
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Properties of morphological operations

• the dilation of a closed set by a compact set is continuous

• the dilation of a compact set by a compact set is continuous

• (F,K) 7→ E(F,K) u.s.c.

• (K′,K) 7→ E(K′,K) u.s.c.

• (F,K) 7→ FK u.s.c.

• (K′,K) 7→ K′

K u.s.c.

• (F,K) 7→ FK u.s.c.

• (K′,K) 7→ K′K u.s.c.
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Myopic topology

• generated by:

KF
G = {K ∈ K,K ∩ F = ∅,K ∩G 6= ∅}

(F ∈ F , G ∈ G)

• finer than the topology induced on K by the hit-or-miss topology

• equivalent on K \ ∅ to the topology induced by the Hausdorff distance

δ(K,K′) = max{ sup
x∈K

d(x,K′), sup
x′∈K′

d(x′,K)}

Rq: δ(K,K′) = inf{ε, K ⊆ D(K′, Bε),K′ ⊆ D(K,Bε)}
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Algebraic framework: complete lattices

• Lattice: (T ,≤) (≤ ordering) such that ∀(x, y) ∈ T , ∃x ∨ y and ∃x ∧ y

• Complete lattice: every family of elements (finite or not) has a smallest upper
bound and a largest lower bound

• ⇒ contains a smallest element 0 and a largest element I:

0 =
∧

T =
∨

∅ et I =
∨

T =
∧

∅

• Examples of complete lattices:
• (P(E),⊆): complete lattice, Boolean (complemented and distributive):

∀x,∃xC , x ∧ xC = 0 and x ∨ xC = I

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

• (F(Rd),⊆)

• functions of R
n in R for the ordering ≤:

f ≤ g ⇔ ∀x ∈ R
n, f(x) ≤ g(x)

• partitions
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Semi-continuity of functions

• u.s.c. :
∀t > f(x),∃V (x),∀y ∈ V (x), t > f(y)

(V (x) neighborhood of x in R
n)

• l.s.c. :
∀t < f(x),∃V (x),∀y ∈ V (x), t < f(y)

• a function is u.s.c. iff its sub-graph is closed

• topology on the space of u.s.c. functions = topology induced by the hit-or-miss
topology on F(Rn × R)

• the set of u.s.c. functions of R
n in R is a complete lattice for ≤:

f ≤ g ⇔ SG(f) ⊆ SG(g)
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Algebraic dilation and erosion

complete lattice (T ,≤)

Algebraic dilation:
∀(xi) ∈ T , δ(∨ixi) = ∨iδ(xi)

Algebraic erosion:
∀(xi) ∈ T , ε(∧ixi) = ∧iε(xi)

Properties:

• δ(0) = 0 (in P(E), 0 = ∅)

• ε(I) = I (in P(E), I = E)

• δ increasing

• ε increasing

• in P(Rn), δ(X) = ∪x∈Xδ({x})
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Adjunctions

(ε, δ) adjunction on (T ,≤):

∀(x, y), δ(x) ≤ y ⇔ x ≤ ε(y)

Properties:

• δ(0) = 0 and ε(I) = I

• (ε, δ) adjunction ⇒ ε = algebraic erosion and δ = algebraic dilation

• δ increasing = algebraic dilation iff ∃ε such that (ε, δ) is an adjunction
⇒ ε = algebraic erosion and ε(x) =

∨

{y ∈ T , δ(y) ≤ x}

• ε increasing = algebraic erosion iff ∃δ such that (ε, δ) is an adjunction
⇒ δ = algebraic dilation and δ(x) =

∧

{y ∈ T , ε(y) ≥ x}

• εδ ≥ Id

• δε ≤ Id

• εδε = ε

• δεδ = δ

• εδεδ = εδ and δεδε = δε
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Links with morphological operators

• On the lattice of the subsets of R
n or Z

n, with inclusion:

δ(X) = ∪x∈Xδ({x})

• + invariance under translation ⇒ ∃B, δ(X) = D(X,B)

• Same result on the lattice of functions.
• Similar results for erosion.
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Algebraic opening and closing

• Algebraic opening: γ increasing, idempotent and anti-extensive

• Algebraic closing: ϕ increasing, idempotent and extensive

• Examples: γ = δε and ϕ = εδ with (ε, δ) = adjunction

• Invariance domain: Inv(ϕ) = {x ∈ T , ϕ(x) = x}

• γ opening ⇒ γ(x) =
∨

{y ∈ Inv(γ), y ≤ x}

• ϕ closing ⇒ ϕ(x) =
∧

{y ∈ Inv(ϕ), x ≤ y}

• (γi) openings ⇒
∨

i γi opening

• (ϕi) closings ⇒
∧

i ϕi closing

• γ1 and γ2 openings ⇒ equivalence between:

1. γ1 ≤ γ2

2. γ1γ2 = γ2γ1 = γ1

3. Inv(γ1) ⊆ Inv(γ2)

• ϕ1 and ϕ2 closings ⇒ equivalence between:

1. ϕ2 ≤ ϕ1

2. ϕ1ϕ2 = ϕ2ϕ1 = ϕ1

3. Inv(ϕ1) ⊆ Inv(ϕ2)
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Algebraic filter theory

Filter = increasing and idempotent operator

Examples

• openings γ and
∨

i γi (anti-extensive filters)

• closings ϕ and
∧

i ϕi (extensive filters)

Theorem on filter composition ϕ and ψ such that ϕ ≥ ψ:

• ϕ ≥ ϕψϕ ≥ ϕψ ∨ ψϕ ≥ ϕψ ∧ ψϕ ≥ ψϕψ ≥ ψ

• ϕψ, ψϕ, ϕψϕ and ψϕψ are filters

• Inv(ϕψϕ) = Inv(ϕψ) and Inv(ψϕψ) = Inv(ψϕ)

• ϕψϕ is the smallest filter which is largest than ϕψ ∨ ψϕ
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Example: alternate sequential filters

• openings γi and closings ϕi such that:

i ≤ j ⇒ γj ≤ γi ≤ Id ≤ ϕi ≤ ϕj

• Theorem on filter composition ⇒mi = γiϕi, ni = ϕiγi, ri = ϕiγiϕi and
si = γiϕiγi are filters

• Alternate sequential filters:

Mi = mimi−1...m2m1

Ni = nini−1...n2n1

Ri = riri−1...r2r1

Si = sisi−1...s2s1

• Property: i ≤ j ⇒MjMi = Mj , NjNi = Nj , ...

Mathematical Morphology – p.48/84



Morphological alternate sequential filters

(...(((fB1
)B1 )B2

)B2 )...Bn
)Bn
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Morphological alternate sequential filters

(...(((fB1
)B1 )B2

)B2 )...Bn
)Bn
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Auto-dual filters

• Operators which are independent of the local contrast, acting similarly on bright
and dark areas.

• Example: morphological center

Median[f(x), ψ1(f)(x), ψ2(f)(x)]

• More generally, for operators {ψ1, ψ2, ...ψn}: (Id ∨ ∧iψi) ∧ ∨iψi

• For instance ψ1(f) = γϕ(f) = (fB)B , ψ2 = ϕγ(f) = (fB)B

Mathematical Morphology – p.50/84



Auto-dual filters

• Operators which are independent of the local contrast, acting similarly on bright
and dark areas.

• Example: morphological center

Median[f(x), ψ1(f)(x), ψ2(f)(x)]

• More generally, for operators {ψ1, ψ2, ...ψn}: (Id ∨ ∧iψi) ∧ ∨iψi

• For instance ψ1(f) = γϕ(f) = (fB)B , ψ2 = ϕγ(f) = (fB)B

F

O

O

F

centre

Mathematical Morphology – p.50/84



Morphological center: numerical example

Closing Opening
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Morphological center: numerical example

Closing then opening Opening then closing
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Morphological center: numerical example

Closing then opening Opening then closing

morphological center
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Hit-or-Miss Transformation

Structuring element: T = (T1, T2), with T1 ∩ T2 = ∅

HMT:

X ⊗ T = E(X,T1) ∩ E(XC , T2)

Thinning (if O ∈ T1):
X ◦ T = X \X ⊗ T

Thickening (if O ∈ T2):
X � T = X ∪X ⊗ T

For T ′ = (T2, T1):

X ◦ T = (XC � T ′)C
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HMT: examples

Mathematical Morphology – p.53/84



HMT: examples
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Skeleton: requirements

• compact representation of objects

• thin lines
• included and centered in the object

• homotopic to the object

• good representation of the geometry

• invertible (reconstruction of the initial object)
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Skeleton: continuous case

A: open set
sρ(A) = set of centers of maximal balls of A of radius ρ

Skeleton:

r(A) =
⋃

ρ>0

sρ(A)

Characterization:

sρ(A) =
⋂

µ>0

[E(A,Bρ) \ [E(A,Bρ)]B̄µ
]

r(A) =
⋃

ρ>0

⋂

µ>0

[E(A,Bρ) \ [E(A,Bρ)]B̄µ
]

Reconstruction:

A =
⋃

ρ>0

D(sρ, Bρ)
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Properties of the continuous skeleton

• sρ(Eρ0
(A)) = sρ+ρ0

(A) ⇒ r(Eρ0
(A)) = ∪ρ>ρ0

sρ(A)

• no general formula for the skeleton of the dilation, opening or closing of a set

• A 7→ r̄(A) is l.s.c. from G in F

• A connected ⇒ r̄(A) connected

• the skeleton is “thin”: its interior is empty
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Skeleton: digital case

• Direct transposition of the continuous case:

S(X) =
⋃

n∈N

[E(X,Bn) \ E(X,Bn)B ]

Properties:
• centers of digital maximal balls
• reconstuction
• but poor connectivity properties

• Skeleton from homotopic thinning

1

1 1

0 0

. .

Properties:
• perfect topology
• no reconstruction
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Centers of maximal ball vs thinning
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Centers of maximal ball vs thinning

Mathematical Morphology – p.58/84



Centers of maximal ball vs thinning
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Application in brain imaging

(PhD of Jean-François Mangin)
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Application in brain imaging
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Geodesic operators

Geodesic distance, conditional to X: dX

x

y

X

d   (x,y)

d(x,y)

X

• if X is closed, there exits a geodesic arc
for any pair of points of X

• unique if X is simply connected

• X convex ⇔ dX = d

Geodesic ball: BX(x, r) = {y ∈ X / dX(x, y) ≤ r}

Rq: BX(x, r) ⊆ B(x, r)

Geodesic dilation:

DX(Y,Br) = {x ∈ R
n / BX(x, r) ∩ Y 6= ∅} = {x ∈ R

n / dX(x, Y ) ≤ r}

Geodesic erosion:

EX(Y,Br) = {x ∈ R
n / BX(x, r) ⊆ Y } = X \DX(X \ Y,Br)

Geodesic opening and closing: by composition
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Properties and reconstruction

Properties:

• similar as in the Euclidean case
• DX(Y,Br) ⊆ D(Y,Br)

• DX(Y,Br) = ∩∞n=1[(Y ⊕ r
n
B) ∩X]n

Digital case:
DX(Y,Br) = [D(Y,B1) ∩X]r

Reconstruction:
[D(Y,B1) ∩X]∞ = D∞X (Y )

= connected components of X which intersect Y
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Binary reconstruction: example
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Binary reconstruction: example
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Binary reconstruction: example
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Geodesic operators on functions

X1 ⊆ X2 and Y1 ⊆ Y2 ⇒ DX1
(Y1, Br) ⊆ DX2

(Y1, Br) ⊆ DX2
(Y2, Br)

⇒ Extension to functions, for f ≤ g, cut by cut:

[Dg(f,Br)]λ = Dgλ
(fλ, Br)

(with fλ = {x, f(x) ≥ λ})

Digital case:

Dg(f,Br) = [D(f,B1) ∧ g]r

Eg(f,Br) = [E(f,B1) ∨ g]r

Numerical reconstruction of f (marker function) in g:

• by dilation Dg(f,B∞) = D∞g (f): opening

• by erosion Eg(f,B∞): closing

• opening by reconstruction: D∞
f

(fB) (flat areas whose contours are some

contours of the original image ⇒ compression)
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Numerical reconstruction: example
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Numerical reconstruction: example
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Numerical reconstruction: example
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Numerical reconstruction: example
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Opening by reconstruction: examples
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Opening by reconstruction: examples

Union of openings by segments of length 20 and reconstruction
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Application to alternate sequential filters
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Application to alternate sequential filters

ASF with an hexagon (maximal size = 1)
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Application to alternate sequential filters

ASF with an hexagon (maximal size = 3)
Mathematical Morphology – p.66/84



Application to alternate sequential filters

ASF with an hexagon (maximal size = 5)
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Application to alternate sequential filters

ASF with an hexagon (maximal size = 9)
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Application to alternate sequential filters

ASF with segments (maximal size = 1)
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Application to alternate sequential filters

ASF with segments (maximal size = 3)
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Application to alternate sequential filters

ASF with segments (maximal size = 5)
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Application to alternate sequential filters

ASF with segments (maximal size = 9)
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Regional maxima

X regional maximum of f if

∀x ∈ X, f(x) = λ et X = CC(fλ)

Computation of regional maxima:

f −D∞f (f − 1)

h-maxima (grey level dynamics):

f −D∞f (f − h)

⇒ robust maxima
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Regional maxima: example
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Robust maxima: example
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Skeleton by influence zones

X =
⋃

i Xi

Influence zone of Xi in XC :

ZI(Xi) = {x ∈ XC / d(x,Xi) < d(x,X \Xi)}

Skeleton by influence zones:

Skiz(X) = (
⋃

i

ZI(Xi))
C

= generalized Voronoï diagram

Properties:

• Skiz(X) ⊆ Skel(XC)

• Skiz is not necessarily connected (even if XC is)
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Skeleton by influence zones: examples
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Skeleton by influence zones: examples
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Skeleton and skeleton by influence zones

Skiz(X) ⊆ r(XC)
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Skeleton and skeleton by influence zones

Skiz(X) ⊆ r(XC)
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Geodesic skeleton by influence zones

Y = ∪iYi

Geodesic influence zone of Yi conditionally to X :

ZIX(Yi) = {x ∈ X, dX(x, Yi) < dX(x, Y \ Yi)}

Geodesic skeleton by influence zones:

SKIZX(Y ) = X \
⋃

i

ZIX(Yi)

X

SKIZ(Y)

1Y

2Y

1Y

2Y

SKIZ   (Y)

X
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Cortex segmentation

(PhD of Arnaud Cachia)
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Cortex segmentation

(PhD of Arnaud Cachia)
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Watersheds

watersheds

minimum

minimum

catchment basins
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Watersheds: definition

Steepest descent:

Desc(x) = max{
f(x)− f(y)

d(x, y)
, y ∈ V (x)}

Ramp of a path π = (x0, ...xn):

Tf (π) =
n

∑

i=1

d(xi−1, xi)Cost(xi−1, xi)

with

Cost(x, y) =











Desc(x) if f(x) > f(y)

Desc(y) if f(y) > f(x)

(Desc(x) +Desc(y))/2 if f(y) = f(x)
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Watersheds: definition

Topographic distance

Tf (x, y) = inf{Tf (π), π = (x0 = x, x1, ..., xn = y)}

(equals 0 on a plateau)

Catchment basin associated to the regional minimum Mi:

BV (Mi) = {x, ∀j 6= i, Tf (x,Mi) < Tf (x,Mj)}

Watersheds:
LPE(f) = [∪iBV (Mi)]

C
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Approach by immersion
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Construction of the watersheds

f such that f(x) ∈ [hmin, hmax], fh = {x, f(x) ≤ h}

Xhmin
= fhmin

Xh+1 = MinRegh+1(f) ∪ ZIfh+1 (Xh)

BV = Xhmax

LPE(f) = XC
hmax
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Illustration of the algorithm
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Illustration of the algorithm
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Watersheds and oversegmentation
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Watersheds and oversegmentation
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Geodesic erosion

in order to impose markers
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Watersheds constraint by markers

f : function on which watersheds should be applied
g: marker function (selects regional minima)
Reconstruction: Ef∧g(g,B∞) (only the selected minima)
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Separation of connected binary objects

Mathematical Morphology – p.83/84



And much more...
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